Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Disodium dimanganese(II) trioxalate dihydrate

#### Xin-Yang Huang<sup>a</sup> and Yu-Ling Wang<sup>b</sup>\*

<sup>a</sup>College of Electronics, Jiangxi University of Finance and Economy, Nanchang, Jiangxi 330013, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China

Correspondence e-mail: ylwangchem@gmail.com

Received 16 September 2007; accepted 17 September 2007

Key indicators: single-crystal X-ray study; T = 130 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.054; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, poly[di- $\mu_2$ aqua-di- $\mu_5$ -oxalato- $\mu_4$ -oxalato-disodiumdimanganese(II)], [Na<sub>2</sub>Mn<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub>, one of the oxalate ions lies on an inversion centre. The Mn atom is six-coordinate and Na is seven-coordinate; two of the oxalate ions bridge in a  $\mu_5$  mode and the third in a  $\mu_4$  mode. The Mn atoms are bridged into a ladder motif; neighbouring ladders are bridged by the water molecules and Na atoms into a three-dimensional network structure. Water–oxalate hydrogen bonds exist in the structure.

#### **Related literature**

For related literature on metal oxalates, see: Bataille & Louër (1999); Castillo *et al.* (2001); Moulton & Zaworotko (2001); Naumov *et al.* (1995); Price *et al.* (2000); Wu *et al.* (2005); Yaghi *et al.* (1996).



#### **Experimental**

Crystal data  $[Na_2Mn_2(C_2O_4)_3(H_2O)_2]$  $M_r = 455.95$ 

Monoclinic,  $P2_1/c$ a = 5.937 (2) Å b = 15.785 (6) Å c = 7.167 (3) Å  $\beta = 100.416 (4)^{\circ}$   $V = 660.6 (4) \text{ Å}^{3}$ Z = 2

## Data collection

| Rigaku Mercury/0 diffractometer        |
|----------------------------------------|
| Absorption correction: multi-scan      |
| (CrystalClear; Rigaku/MSC,             |
| 2000)                                  |
| $T_{\min} = 0.684, \ T_{\max} = 0.821$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ wR(F^2) = 0.054 S = 1.03 1514 reflections 115 parameters 2 restraints Mo  $K\alpha$  radiation  $\mu = 2.06 \text{ mm}^{-1}$  T = 130 K $0.20 \times 0.18 \times 0.10 \text{ mm}$ 

5047 measured reflections 1514 independent reflections 1415 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.022$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$ 

## Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                      | D-H                      | $H \cdot \cdot \cdot A$  | $D \cdots A$               | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------------|--------------------------|--------------------------|----------------------------|---------------------------|
| $07 - H7A \cdots O2^{i}$<br>$07 - H7B \cdots O3^{ii}$ | 0.887 (10)<br>0.889 (10) | 1.833 (11)<br>1.947 (11) | 2.6877 (19)<br>2.8237 (19) | 161 (2)<br>168 (2)        |
|                                                       |                          |                          |                            |                           |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*) and *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Education Department of Jiangxi Province (grant No. 2007–125)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2327).

#### References

- Bataille, T. & Louër, D. (1999). Acta Cryst. C55, 1760-1762.
- Brandenburg, K. (2005). *DIAMOND*. Version 3.0. Crystal Impact GbR, Bonn, Germany.
- Castillo, O., Luque, A., Lloret, F. & Romàn, P. (2001). *Inorg. Chem. Commun.* **4**, 350–353.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Naumov, D. Y., Virovets, A. V., Podberezskaya, N. V. & Boldyreva, E. V. (1995). Acta Cryst. C51, 60–62.
- Price, D. J., Powell, A. K. & Wood, P. T. (2000). J. Chem. Soc. Dalton Trans. pp. 3566–3569.
- Rigaku/MSC (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan, and MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wu, W. Y., Song, Y., Li, Y. Z. & You, X. Z. (2005). Inorg. Chem. Commun. 8, 732–736.
- Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. (1996). J. Am. Chem. Soc. 119, 9096–9101.

supplementary materials

Acta Cryst. (2007). E63, m2577 [doi:10.1107/S1600536807045564]

#### Disodium dimanganese(II) trioxalate dihydrate

#### X.-Y. Huang and Y.-L. Wang

#### Comment

Carboxylate ligands have been extensively studied because of their versatile coordinating modes in the coordination chemistry (Moulton & Zaworotko, 2001; Yaghi *et al.*, 1996). Oxalate (ox) ligand is an important carboxylate ligand as it has a multiple coordinating modes, which together with the varied coordination geometry of metal ions has led to the generation of products containing one-dimensional chains, two-dimensional layers and three-dimensional frameworks (Castillo *et al.*, 2005; Naumov *et al.*, 1995; Bataille & Louër, 1999). The hydrothermal reaction of MnCl<sub>2</sub> with Na<sub>2</sub>(ox) and oxalic acid yields the title complex, (I). We present its structure here.

The asymmetric unit of (I) consists of one manganese(II) ion, one sodium(I) ion, one and half ox dianions, and one coordinated water molecule. As depicted in Fig. 1, the Mn atom is six-coordinated by four oxygen atoms from three dianionic ox ligands in a distorted square planar geometry, and two oxygen atoms from water molecule and ox ligand in the apical positions. The bond dimensions involving Mn are normal (Table 1), and are comparable to the values in related manganese (II) complexes (Wu *et al.*, 2005). The Na atom is seven-coordinated by seven O atom from four dianionic ox ligands, and one water molecule with the Na—O bond lengths varying from 2.302 (2)–2.712 (2) Å, which are comparable to the values in the [Na<sub>2</sub>Co<sub>2</sub>(ox)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]  $_{n}$  compound (Price *et al.*, 2000).

It is interesting that the coordinated water molecule displays a  $\mu_2$  coordinating mode bridgeing the Mn1 and Na1 atoms, which further bridge by a  $\mu_2$ carboxlate O atom to form a 4-membered NaMnO<sub>2</sub> ring with a Na···Mn separation of 3.55 Å (Fig. 1). Two types of ox ligands are observed in this structure. One is located on an inversion centre with a coplanar conformation and bridgs two Mn atoms and two Na atoms, in which each O atom is exhibits a  $\mu_2$  coordinating fashion. The other displays a nonplanar conformation with the two carboxylate groups twisted with a dihedral angle of 19.8 (5) °. It bridgs two Mn atoms and three Na atoms using its two mondentate O atoms, one  $\mu_2$ -O atom and one  $\mu_3$ -O atom. The Mn ions are linked by the ox lignads to form a one-dimensional ladder structure propagating along *a* axis, as shown in Fig.2. The ladder is repeated by translation about every 5.9 Å along the a direction, comparable to the length of the *a* axis. The ladders are further connected by the Na ions and water molecules through the Na—O bonds to produce a three-dimensional structure, as shown in Fig. 3. The O—H···O hydrogen bonds between the water molecules and oxalate O atoms are observed in the three-dimensional structure with a O···O distances of 2.688 (2) and 2.824 (2) Å, respectively (Table 2).

#### **Experimental**

The title compound was synthesized by a hydrothermal method under autogenous pressure. A mixture of  $MnCl_2·4H_2O$  (0.269 g,1 mmol),  $Na_2C_2O_4$  (0.268 g, 2 mmol),  $H_2C_2O_4$  (0.180 g, 2 mmol), and 15 ml distilled water was stirred under ambient conditions. The final mixture was sealed in a 25 ml Teflon-lined steel autoclave and heated at 423 K for 3 days, and then cooled to room temperature. Colorless prism crystals of (I) were obtained, and these were recovered by filtration, washed with distilled water and dried in air (yield 32%). Analysis calculated for  $C_6H_4O_{14}Mn_2Na_2$ : C 15.81, H 0.88%; found: C 15.92, H 0.90%.

#### Refinement

The H atoms bonded to O atoms were visible in difference maps and refined with a *DFIX* restraint (*SHELXTL*; Sheldrick, 1997*b*) of O—H = 0.90 Å and with  $U_{iso}(H) = 1.5U_{eq}(O)$ .

Figures



Fig. 1. *ORTEP* drawing of the title compound. Thermal ellipsoids are drawn at the 60% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 2; (iii) x, -y + 1/2, z - 1/2; (iv) x + 1, -y + 1/2, z - 1/2; (v) -x + 2, -y + 1, -z + 1.]



Fig. 2. A view of the one-dimensional  $Mn_2(ox)_3$  ladder-like structure.



Fig. 3. A perspective view of the three-dimensional structure of (I) (viewed down the *a* axis).

#### poly[di-µ2-aqua-di-µ5-oxalato-µ4-oxalato-disodiumdimanganese(II)],

| Crystal data                    |                                               |
|---------------------------------|-----------------------------------------------|
| $[Na_2Mn_2(C_2O_4)_3(H_2O)_2]$  | $F_{000} = 448$                               |
| $M_r = 455.95$                  | $D_{\rm x} = 2.292 {\rm Mg m}^{-3}$           |
| Monoclinic, $P2_1/c$            | Mo K $\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 2218 reflections         |
| a = 5.937 (2) Å                 | $\theta = 2.6 - 27.5^{\circ}$                 |
| b = 15.785 (6) Å                | $\mu = 2.06 \text{ mm}^{-1}$                  |
| c = 7.167 (3)  Å                | T = 130  K                                    |
| $\beta = 100.416 \ (4)^{\circ}$ | Prism, white                                  |
| $V = 660.6 (4) \text{ Å}^3$     | $0.20\times0.18\times0.10~mm$                 |
| Z = 2                           |                                               |
|                                 |                                               |

#### Data collection

| Rigaku Mercury70<br>diffractometer                                    | $R_{\rm int} = 0.022$                |
|-----------------------------------------------------------------------|--------------------------------------|
| Radiation source: fine-focus sealed tube                              | $\theta_{\text{max}} = 27.5^{\circ}$ |
| Monochromator: graphite                                               | $\theta_{\min} = 2.6^{\circ}$        |
| T = 130  K                                                            | $h = -7 \rightarrow 7$               |
| ω scans                                                               | $k = -20 \rightarrow 17$             |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku/MSC, 2000) | $l = -9 \rightarrow 7$               |
| $T_{\min} = 0.684, T_{\max} = 0.821$                                  | Standard reflections: .;             |
| 5047 measured reflections                                             | every . reflections                  |
| 1514 independent reflections                                          | intensity decay: .                   |
| 1415 reflections with $I > 2\sigma(I)$                                |                                      |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.024$                                | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.054$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0234P)^2 + 0.5936P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.03                                                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 1514 reflections                                               | $\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$                                 |
| 115 parameters                                                 | $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$                              |
| 2 restraints                                                   | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

| Fractional | atomic | coordinates | and | isotropic                               | or equiv | alent is | sotropic               | displa   | cement | parameters | (Å | 2 |
|------------|--------|-------------|-----|-----------------------------------------|----------|----------|------------------------|----------|--------|------------|----|---|
|            |        |             |     | real real real real real real real real |          |          | · · · · <b>·</b> · · · | <b>r</b> |        | <b>r</b>   | 1  |   |

|     | x            | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|-------------|--------------|---------------------------|
| Na1 | 0.96700 (12) | 0.32021 (4) | 0.29951 (10) | 0.01170 (16)              |

## supplementary materials

| 0.77063 (4) | 0.396970 (16)                                                                                                                                                                     | 0.70734 (4)                                          | 0.00868 (9)                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.6514 (2)  | 0.27044 (7)                                                                                                                                                                       | 0.73592 (18)                                         | 0.0122 (3)                                           |
| 0.3505 (2)  | 0.19589 (8)                                                                                                                                                                       | 0.7916 (2)                                           | 0.0153 (3)                                           |
| 0.3964 (2)  | 0.41196 (8)                                                                                                                                                                       | 0.71439 (18)                                         | 0.0121 (3)                                           |
| 0.0795 (2)  | 0.33091 (8)                                                                                                                                                                       | 0.66136 (18)                                         | 0.0126 (3)                                           |
| 0.8909 (2)  | 0.52445 (8)                                                                                                                                                                       | 0.76226 (18)                                         | 0.0128 (3)                                           |
| 1.0935 (2)  | 0.60435 (8)                                                                                                                                                                       | 0.98897 (19)                                         | 0.0140 (3)                                           |
| 0.6836 (2)  | 0.41824 (8)                                                                                                                                                                       | 0.40310 (18)                                         | 0.0111 (3)                                           |
| 0.556 (3)   | 0.3905 (12)                                                                                                                                                                       | 0.357 (3)                                            | 0.017*                                               |
| 0.676 (4)   | 0.4710 (8)                                                                                                                                                                        | 0.359 (3)                                            | 0.017*                                               |
| 0.4430 (3)  | 0.26164 (11)                                                                                                                                                                      | 0.7476 (2)                                           | 0.0101 (3)                                           |
| 0.2918 (3)  | 0.34261 (11)                                                                                                                                                                      | 0.7036 (2)                                           | 0.0095 (3)                                           |
| 0.9948 (3)  | 0.53706 (11)                                                                                                                                                                      | 0.9280 (3)                                           | 0.0106 (3)                                           |
|             | 0.77063 (4)<br>0.6514 (2)<br>0.3505 (2)<br>0.3964 (2)<br>0.0795 (2)<br>0.8909 (2)<br>1.0935 (2)<br>0.6836 (2)<br>0.556 (3)<br>0.676 (4)<br>0.4430 (3)<br>0.2918 (3)<br>0.9948 (3) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|--------------|--------------|---------------|
| Na1 | 0.0084 (3)   | 0.0128 (3)   | 0.0139 (3)   | -0.0002 (3)  | 0.0021 (3)   | 0.0015 (3)    |
| Mn1 | 0.00639 (14) | 0.00773 (14) | 0.01170 (14) | -0.00048 (9) | 0.00103 (10) | -0.00016 (10) |
| O1  | 0.0066 (6)   | 0.0100 (6)   | 0.0203 (6)   | -0.0002 (5)  | 0.0029 (5)   | 0.0017 (5)    |
| O2  | 0.0094 (6)   | 0.0102 (6)   | 0.0262 (7)   | -0.0014 (5)  | 0.0029 (5)   | 0.0042 (5)    |
| O3  | 0.0088 (6)   | 0.0099 (6)   | 0.0177 (7)   | 0.0003 (5)   | 0.0024 (5)   | 0.0010 (5)    |
| O4  | 0.0060 (6)   | 0.0142 (6)   | 0.0172 (6)   | 0.0008 (5)   | 0.0014 (5)   | -0.0007 (5)   |
| O5  | 0.0151 (7)   | 0.0101 (6)   | 0.0124 (6)   | -0.0015 (5)  | 0.0000 (5)   | 0.0013 (5)    |
| O6  | 0.0187 (7)   | 0.0098 (6)   | 0.0128 (6)   | -0.0045 (5)  | 0.0008 (5)   | 0.0009 (5)    |
| O7  | 0.0092 (6)   | 0.0096 (6)   | 0.0138 (6)   | -0.0012 (5)  | 0.0001 (5)   | 0.0009 (5)    |
| C1  | 0.0091 (8)   | 0.0091 (8)   | 0.0119 (8)   | -0.0004 (6)  | 0.0010 (7)   | -0.0007 (6)   |
| C2  | 0.0082 (8)   | 0.0121 (8)   | 0.0087 (8)   | 0.0010 (6)   | 0.0026 (6)   | -0.0002 (6)   |
| C3  | 0.0094 (8)   | 0.0095 (8)   | 0.0132 (8)   | 0.0000 (6)   | 0.0030 (7)   | 0.0010 (7)    |

### Geometric parameters (Å, °)

| $Na1-O2^1$            | 2.3021 (17) | O2—Na1 <sup>v11</sup>  | 2.3021 (17) |
|-----------------------|-------------|------------------------|-------------|
| Na1—O1 <sup>ii</sup>  | 2.3359 (15) | O3—C2                  | 1.254 (2)   |
| Na1—O6 <sup>iii</sup> | 2.3565 (16) | O4—C2                  | 1.256 (2)   |
| Na1—O7                | 2.4958 (16) | O4—Mn1 <sup>viii</sup> | 2.1856 (14) |
| Na1—O4 <sup>iv</sup>  | 2.5638 (17) | O4—Na1 <sup>viii</sup> | 2.5638 (17) |
| Na1—O5 <sup>iii</sup> | 2.6561 (16) | O4—Na1 <sup>vii</sup>  | 2.7121 (16) |
| Na1—O4 <sup>i</sup>   | 2.7121 (16) | O5—C3                  | 1.251 (2)   |
| Na1—C3 <sup>iii</sup> | 2.814 (2)   | O5—Na1 <sup>iii</sup>  | 2.6561 (16) |
| Mn1—O1                | 2.1411 (14) | O6—C3                  | 1.253 (2)   |
| Mn1—O5                | 2.1477 (14) | O6—Mn1 <sup>v</sup>    | 2.1803 (15) |
| Mn1—07                | 2.1740 (15) | O6—Na1 <sup>iii</sup>  | 2.3565 (16) |
| Mn1—O6 <sup>v</sup>   | 2.1803 (15) | O7—H7B                 | 0.889 (10)  |
| Mn1—O4 <sup>iv</sup>  | 2.1856 (14) | O7—H7A                 | 0.887 (10)  |
| Mn1—O3                | 2.2444 (15) | C1—C2                  | 1.561 (2)   |
|                       |             |                        |             |

| O1—C1                                    | 1.263 (2)   | C3—C3 <sup>v</sup>                          | 1.554 (3)    |
|------------------------------------------|-------------|---------------------------------------------|--------------|
| O1—Na1 <sup>vi</sup>                     | 2.3359 (15) | C3—Na1 <sup>iii</sup>                       | 2.814 (2)    |
| O2—C1                                    | 1.241 (2)   |                                             |              |
| O2 <sup>i</sup> —Na1—O1 <sup>ii</sup>    | 133.60 (6)  | C1—O1—Mn1                                   | 116.98 (11)  |
| O2 <sup>i</sup> —Na1—O6 <sup>iii</sup>   | 91.64 (5)   | C1—O1—Na1 <sup>vi</sup>                     | 132.89 (11)  |
| O1 <sup>ii</sup> —Na1—O6 <sup>iii</sup>  | 98.56 (5)   | Mn1—O1—Na1 <sup>vi</sup>                    | 108.83 (6)   |
| O2 <sup>i</sup> —Na1—O7                  | 143.02 (5)  | C1—O2—Na1 <sup>vii</sup>                    | 125.70 (12)  |
| O1 <sup>ii</sup> —Na1—O7                 | 82.97 (5)   | C2—O3—Mn1                                   | 112.82 (11)  |
| O6 <sup>iii</sup> —Na1—O7                | 86.77 (5)   | C2—O4—Mn1 <sup>viii</sup>                   | 136.59 (12)  |
| O2 <sup>i</sup> —Na1—O4 <sup>iv</sup>    | 87.38 (5)   | C2—O4—Na1 <sup>viii</sup>                   | 108.68 (11)  |
| O1 <sup>ii</sup> —Na1—O4 <sup>iv</sup>   | 106.90 (5)  | Mn1 <sup>viii</sup> —O4—Na1 <sup>viii</sup> | 96.42 (5)    |
| O6 <sup>iii</sup> —Na1—O4 <sup>iv</sup>  | 145.55 (5)  | C2—O4—Na1 <sup>vii</sup>                    | 110.12 (11)  |
| O7—Na1—O4 <sup>iv</sup>                  | 74.01 (5)   | Mn1 <sup>viii</sup> —O4—Na1 <sup>vii</sup>  | 95.50 (5)    |
| O2 <sup>i</sup> —Na1—O5 <sup>iii</sup>   | 75.66 (5)   | Na1 <sup>viii</sup> —O4—Na1 <sup>vii</sup>  | 105.96 (5)   |
| O1 <sup>ii</sup> —Na1—O5 <sup>iii</sup>  | 143.19 (5)  | C3—O5—Mn1                                   | 114.42 (11)  |
| O6 <sup>iii</sup> —Na1—O5 <sup>iii</sup> | 52.40 (4)   | C3—O5—Na1 <sup>iii</sup>                    | 83.95 (10)   |
| O7—Na1—O5 <sup>iii</sup>                 | 74.26 (5)   | Mn1—O5—Na1 <sup>iii</sup>                   | 159.97 (6)   |
| O4 <sup>iv</sup> —Na1—O5 <sup>iii</sup>  | 94.32 (4)   | C3—O6—Mn1 <sup>v</sup>                      | 113.92 (11)  |
| O2 <sup>i</sup> —Na1—O4 <sup>i</sup>     | 65.42 (4)   | C3—O6—Na1 <sup>iii</sup>                    | 97.75 (11)   |
| O1 <sup>ii</sup> —Na1—O4 <sup>i</sup>    | 68.39 (5)   | Mn1 <sup>v</sup> —O6—Na1 <sup>iii</sup>     | 148.30 (6)   |
| O6 <sup>iii</sup> —Na1—O4 <sup>i</sup>   | 97.62 (5)   | Mn1—O7—Na1                                  | 98.73 (5)    |
| O7—Na1—O4 <sup>i</sup>                   | 151.36 (5)  | Mn1—O7—H7B                                  | 119.2 (15)   |
| O4 <sup>iv</sup> —Na1—O4 <sup>i</sup>    | 113.01 (4)  | Na1—O7—H7B                                  | 118.0 (15)   |
| O5 <sup>iii</sup> —Na1—O4 <sup>i</sup>   | 130.13 (5)  | Mn1—O7—H7A                                  | 109.3 (15)   |
| O1—Mn1—O5                                | 163.98 (5)  | Na1—O7—H7A                                  | 99.2 (15)    |
| O1—Mn1—O7                                | 102.55 (5)  | H7B—O7—H7A                                  | 110 (2)      |
| O5—Mn1—O7                                | 92.86 (5)   | O2—C1—O1                                    | 126.34 (16)  |
| O1—Mn1—O6 <sup>v</sup>                   | 87.97 (5)   | O2—C1—C2                                    | 118.12 (16)  |
| O5—Mn1—O6 <sup>v</sup>                   | 77.01 (5)   | O1—C1—C2                                    | 115.54 (15)  |
| O7—Mn1—O6 <sup>v</sup>                   | 168.70 (5)  | O3—C2—O4                                    | 127.40 (16)  |
| O1—Mn1—O4 <sup>iv</sup>                  | 82.54 (5)   | O3—C2—C1                                    | 116.24 (15)  |
| O5—Mn1—O4 <sup>iv</sup>                  | 102.38 (5)  | O4—C2—C1                                    | 116.36 (15)  |
| O7—Mn1—O4 <sup>iv</sup>                  | 88.64 (5)   | O5—C3—O6                                    | 125.80 (16)  |
| O6 <sup>v</sup> —Mn1—O4 <sup>iv</sup>    | 88.67 (5)   | O5—C3—C3 <sup>v</sup>                       | 117.67 (19)  |
| O1—Mn1—O3                                | 75.55 (5)   | O6—C3—C3 <sup>v</sup>                       | 116.52 (19)  |
| O5—Mn1—O3                                | 101.24 (5)  | O5—C3—Na1 <sup>iii</sup>                    | 69.81 (10)   |
| O7—Mn1—O3                                | 87.11 (5)   | O6—C3—Na1 <sup>iii</sup>                    | 56.07 (9)    |
| O6 <sup>v</sup> —Mn1—O3                  | 99.66 (5)   | C3 <sup>v</sup> —C3—Na1 <sup>iii</sup>      | 171.83 (16)  |
| O4 <sup>iv</sup> —Mn1—O3                 | 156.18 (5)  |                                             |              |
| O2 <sup>i</sup> —Na1—Mn1—O1              | -109.75 (6) | O6 <sup>v</sup> —Mn1—O1—C1                  | 98.97 (13)   |
| O1 <sup>ii</sup> —Na1—Mn1—O1             | 34.66 (4)   | O4 <sup>iv</sup> —Mn1—O1—C1                 | -172.11 (13) |

## supplementary materials

| O6 <sup>iii</sup> —Na1—Mn1—O1              | 134.71 (6)  | O3—Mn1—O1—C1                                 | -1.55 (12)   |
|--------------------------------------------|-------------|----------------------------------------------|--------------|
| O7—Na1—Mn1—O1                              | 113.12 (6)  | Na1—Mn1—O1—C1                                | -126.08 (12) |
| O4 <sup>iv</sup> —Na1—Mn1—O1               | -83.84 (6)  | Na1 <sup>vi</sup> —Mn1—O1—C1                 | 168.66 (16)  |
| O5 <sup>iii</sup> —Na1—Mn1—O1              | 177.87 (5)  | O5—Mn1—O1—Na1 <sup>vi</sup>                  | -89.89 (18)  |
| O4 <sup>i</sup> —Na1—Mn1—O1                | -22.03 (6)  | O7—Mn1—O1—Na1 <sup>vi</sup>                  | 106.15 (6)   |
| C3 <sup>iii</sup> —Na1—Mn1—O1              | 157.62 (5)  | O6 <sup>v</sup> —Mn1—O1—Na1 <sup>vi</sup>    | -69.69 (6)   |
| Mn1 <sup>ii</sup> —Na1—Mn1—O1              | 6.34 (4)    | O4 <sup>iv</sup> —Mn1—O1—Na1 <sup>vi</sup>   | 19.23 (6)    |
| Na1 <sup>ii</sup> —Na1—Mn1—O1              | 38.17 (7)   | O3—Mn1—O1—Na1 <sup>vi</sup>                  | -170.21 (7)  |
| Na1 <sup>vi</sup> —Na1—Mn1—O1              | -35.49 (4)  | Na1—Mn1—O1—Na1 <sup>vi</sup>                 | 65.25 (5)    |
| O2 <sup>i</sup> —Na1—Mn1—O5                | 63.21 (6)   | O1—Mn1—O3—C2                                 | -9.55 (11)   |
| O1 <sup>ii</sup> —Na1—Mn1—O5               | -152.38 (5) | O5—Mn1—O3—C2                                 | -173.45 (12) |
| O6 <sup>iii</sup> —Na1—Mn1—O5              | -52.33 (6)  | O7—Mn1—O3—C2                                 | 94.20 (12)   |
| O7—Na1—Mn1—O5                              | -73.92 (6)  | O6 <sup>v</sup> —Mn1—O3—C2                   | -94.91 (12)  |
| O4 <sup>iv</sup> —Na1—Mn1—O5               | 89.12 (6)   | O4 <sup>iv</sup> —Mn1—O3—C2                  | 14.2 (2)     |
| O5 <sup>iii</sup> —Na1—Mn1—O5              | -9.17 (7)   | Na1—Mn1—O3—C2                                | 65.79 (12)   |
| O4 <sup>i</sup> —Na1—Mn1—O5                | 150.93 (6)  | Na1 <sup>vi</sup> —Mn1—O3—C2                 | -15.96 (12)  |
| C3 <sup>iii</sup> —Na1—Mn1—O5              | -29.42 (6)  | O1—Mn1—O5—C3                                 | 26.3 (3)     |
| Mn1 <sup>ii</sup> —Na1—Mn1—O5              | 179.31 (4)  | O7—Mn1—O5—C3                                 | -169.35 (12) |
| Na1 <sup>ii</sup> —Na1—Mn1—O5              | -148.87 (7) | O6 <sup>v</sup> —Mn1—O5—C3                   | 5.57 (12)    |
| Na1 <sup>vi</sup> —Na1—Mn1—O5              | 137.47 (4)  | O4 <sup>iv</sup> —Mn1—O5—C3                  | -80.12 (13)  |
| O2 <sup>i</sup> —Na1—Mn1—O7                | 137.13 (7)  | O3—Mn1—O5—C3                                 | 103.03 (13)  |
| O1 <sup>ii</sup> —Na1—Mn1—O7               | -78.46 (6)  | Na1—Mn1—O5—C3                                | -127.40 (12) |
| O6 <sup>iii</sup> —Na1—Mn1—O7              | 21.58 (6)   | Na1 <sup>vi</sup> —Mn1—O5—C3                 | -43.73 (15)  |
| O4 <sup>iv</sup> —Na1—Mn1—O7               | 163.03 (7)  | O1—Mn1—O5—Na1 <sup>iii</sup>                 | -178.56 (14) |
| O5 <sup>iii</sup> —Na1—Mn1—O7              | 64.74 (6)   | O7—Mn1—O5—Na1 <sup>iii</sup>                 | -14.22 (19)  |
| O4 <sup>i</sup> —Na1—Mn1—O7                | -135.15 (8) | O6 <sup>v</sup> —Mn1—O5—Na1 <sup>iii</sup>   | 160.70 (19)  |
| C3 <sup>iii</sup> —Na1—Mn1—O7              | 44.50 (6)   | O4 <sup>iv</sup> —Mn1—O5—Na1 <sup>iii</sup>  | 75.01 (19)   |
| Mn1 <sup>ii</sup> —Na1—Mn1—O7              | -106.78 (6) | O3—Mn1—O5—Na1 <sup>iii</sup>                 | -101.84 (18) |
| Na1 <sup>ii</sup> —Na1—Mn1—O7              | -74.95 (8)  | Na1—Mn1—O5—Na1 <sup>iii</sup>                | 27.73 (19)   |
| Na1 <sup>vi</sup> —Na1—Mn1—O7              | -148.61 (5) | Na1 <sup>vi</sup> —Mn1—O5—Na1 <sup>iii</sup> | 111.40 (17)  |
| O2 <sup>i</sup> —Na1—Mn1—O6 <sup>v</sup>   | -26.93 (7)  | O1—Mn1—O7—Na1                                | -69.96 (6)   |
| O1 <sup>ii</sup> —Na1—Mn1—O6 <sup>v</sup>  | 117.49 (6)  | O5—Mn1—O7—Na1                                | 114.42 (6)   |
| O6 <sup>iii</sup> —Na1—Mn1—O6 <sup>v</sup> | -142.47 (8) | O6 <sup>v</sup> —Mn1—O7—Na1                  | 88.3 (3)     |
| O7—Na1—Mn1—O6 <sup>v</sup>                 | -164.05 (7) | O4 <sup>iv</sup> —Mn1—O7—Na1                 | 12.09 (5)    |
| O4 <sup>iv</sup> —Na1—Mn1—O6 <sup>v</sup>  | -1.02 (7)   | O3—Mn1—O7—Na1                                | -144.46 (5)  |
| O5 <sup>iii</sup> —Na1—Mn1—O6 <sup>v</sup> | -99.31 (6)  | Na1 <sup>vi</sup> —Mn1—O7—Na1                | -31.69 (5)   |
| O4 <sup>i</sup> —Na1—Mn1—O6 <sup>v</sup>   | 60.79 (7)   | O2 <sup>i</sup> —Na1—O7—Mn1                  | -73.35 (10)  |
| C3 <sup>iii</sup> —Na1—Mn1—O6 <sup>v</sup> | -119.56 (6) | O1 <sup>ii</sup> —Na1—O7—Mn1                 | 99.18 (5)    |
| Mn1 <sup>ii</sup> —Na1—Mn1—O6 <sup>v</sup> | 89.17 (6)   | O6 <sup>iii</sup> —Na1—O7—Mn1                | -161.78 (5)  |
| Na1 <sup>ii</sup> —Na1—Mn1—O6 <sup>v</sup> | 121.00 (7)  | O4 <sup>iv</sup> —Na1—O7—Mn1                 | -10.70 (4)   |
| Na1 <sup>vi</sup> —Na1—Mn1—O6 <sup>v</sup> | 47.34 (5)   | O5 <sup>iii</sup> —Na1—O7—Mn1                | -110.03 (5)  |

| O2 <sup>i</sup> —Na1—Mn1—O4 <sup>iv</sup>    | -25.91 (6)  | O4 <sup>i</sup> —Na1—O7—Mn1                | 98.19 (10)   |
|----------------------------------------------|-------------|--------------------------------------------|--------------|
| O1 <sup>ii</sup> —Na1—Mn1—O4 <sup>iv</sup>   | 118.50 (6)  | C3 <sup>iii</sup> —Na1—O7—Mn1              | -136.63 (6)  |
| O6 <sup>iii</sup> —Na1—Mn1—O4 <sup>iv</sup>  | -141.45 (7) | Mn1 <sup>ii</sup> —Na1—O7—Mn1              | 88.85 (5)    |
| O7—Na1—Mn1—O4 <sup>iv</sup>                  | -163.03 (7) | Na1 <sup>ii</sup> —Na1—O7—Mn1              | 150.99 (4)   |
| O5 <sup>iii</sup> —Na1—Mn1—O4 <sup>iv</sup>  | -98.29 (6)  | Na1 <sup>vi</sup> —Na1—O7—Mn1              | 25.32 (4)    |
| O4 <sup>i</sup> —Na1—Mn1—O4 <sup>iv</sup>    | 61.81 (6)   | Na1 <sup>vii</sup> —O2—C1—O1               | -177.19 (13) |
| C3 <sup>iii</sup> —Na1—Mn1—O4 <sup>iv</sup>  | -118.54 (6) | Na1 <sup>vii</sup> —O2—C1—C2               | 3.4 (2)      |
| Mn1 <sup>ii</sup> —Na1—Mn1—O4 <sup>iv</sup>  | 90.19 (5)   | Mn1—O1—C1—O2                               | -168.96 (14) |
| Na1 <sup>ii</sup> —Na1—Mn1—O4 <sup>iv</sup>  | 122.01 (9)  | Na1 <sup>vi</sup> —O1—C1—O2                | -3.7 (3)     |
| Na1 <sup>vi</sup> —Na1—Mn1—O4 <sup>iv</sup>  | 48.36 (5)   | Mn1—O1—C1—C2                               | 10.45 (19)   |
| O2 <sup>i</sup> —Na1—Mn1—O3                  | -179.73 (6) | Na1 <sup>vi</sup> —O1—C1—C2                | 175.74 (11)  |
| O1 <sup>ii</sup> —Na1—Mn1—O3                 | -35.32 (5)  | Mn1—O3—C2—O4                               | -162.51 (15) |
| O6 <sup>iii</sup> —Na1—Mn1—O3                | 64.72 (6)   | Mn1—O3—C2—C1                               | 17.43 (18)   |
| O7—Na1—Mn1—O3                                | 43.14 (6)   | Mn1 <sup>viii</sup> —O4—C2—O3              | -34.9 (3)    |
| O4 <sup>iv</sup> —Na1—Mn1—O3                 | -153.83 (6) | Na1 <sup>viii</sup> —O4—C2—O3              | 87.01 (19)   |
| O5 <sup>iii</sup> —Na1—Mn1—O3                | 107.88 (5)  | Na1 <sup>vii</sup> —O4—C2—O3               | -157.33 (15) |
| O4 <sup>i</sup> —Na1—Mn1—O3                  | -92.01 (6)  | Mn1 <sup>viii</sup> —O4—C2—C1              | 145.13 (13)  |
| C3 <sup>iii</sup> —Na1—Mn1—O3                | 87.64 (6)   | Na1 <sup>viii</sup> —O4—C2—C1              | -92.93 (14)  |
| Mn1 <sup>ii</sup> —Na1—Mn1—O3                | -63.64 (4)  | Na1 <sup>vii</sup> —O4—C2—C1               | 22.73 (17)   |
| Na1 <sup>ii</sup> —Na1—Mn1—O3                | -31.81 (8)  | O2—C1—C2—O3                                | 159.90 (16)  |
| Na1 <sup>vi</sup> —Na1—Mn1—O3                | -105.47 (4) | O1—C1—C2—O3                                | -19.6 (2)    |
| O2 <sup>i</sup> —Na1—Mn1—Na1 <sup>vi</sup>   | -74.26 (5)  | O2—C1—C2—O4                                | -20.2 (2)    |
| O1 <sup>ii</sup> —Na1—Mn1—Na1 <sup>vi</sup>  | 70.15 (4)   | O1—C1—C2—O4                                | 160.39 (15)  |
| O6 <sup>iii</sup> —Na1—Mn1—Na1 <sup>vi</sup> | 170.19 (4)  | Mn1                                        | 174.76 (15)  |
| O7—Na1—Mn1—Na1 <sup>vi</sup>                 | 148.61 (5)  | Na1 <sup>iii</sup> —O5—C3—O6               | 3.09 (18)    |
| O4 <sup>iv</sup> —Na1—Mn1—Na1 <sup>vi</sup>  | -48.36 (5)  | Mn1—O5—C3—C3 <sup>v</sup>                  | -4.7 (2)     |
| O5 <sup>iii</sup> —Na1—Mn1—Na1 <sup>vi</sup> | -146.65 (3) | Na1 <sup>iii</sup> —O5—C3—C3 <sup>v</sup>  | -176.4 (2)   |
| O4 <sup>i</sup> —Na1—Mn1—Na1 <sup>vi</sup>   | 13.46 (6)   | Mn1—O5—C3—Na1 <sup>iii</sup>               | 171.67 (9)   |
| C3 <sup>iii</sup> —Na1—Mn1—Na1 <sup>vi</sup> | -166.89 (4) | Mn1 <sup>v</sup>                           | 175.21 (15)  |
| Mn1 <sup>ii</sup> —Na1—Mn1—Na1 <sup>vi</sup> | 41.83 (3)   | Na1 <sup>iii</sup> —O6—C3—O5               | -3.5 (2)     |
| Na1 <sup>ii</sup> —Na1—Mn1—Na1 <sup>vi</sup> | 73.66 (7)   | Mn1 <sup>v</sup>                           | -5.3 (2)     |
| O5—Mn1—O1—C1                                 | 78.8 (2)    | Na1 <sup>iii</sup> —O6—C3—C3 <sup>v</sup>  | 176.00 (18)  |
| O7—Mn1—O1—C1                                 | -85.19 (13) | Mn1 <sup>v</sup> —O6—C3—Na1 <sup>iii</sup> | 178.71 (12)  |

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+2; (vi) *x*, -*y*+1/2, *z*+1/2; (vii) *x*-1, -*y*+1/2, *z*+1/2; (viii) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------|
| O7—H7A···O2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.887 (10)  | 1.833 (11)   | 2.6877 (19)  | 161 (2)    |
| O7—H7B···O3 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.889 (10)  | 1.947 (11)   | 2.8237 (19)  | 168 (2)    |
| Symmetry codes: (ii) $x, -y+1/2, z-1/2$ ; (ix) $-x+1, -y+1/2, z-1/2$ ; (ix) $-x+1/2, -y+1/2, -y+1/2, -y+1/2$ ; (ix) $-x+1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2$ ; (ix) $-x+1/2, -y+1/2, $ | -y+1, -z+1. |              |              |            |







Fig. 2

Fig. 3

